Extensions 1→N→G→Q→1 with N=C12:S3 and Q=C22

Direct product G=NxQ with N=C12:S3 and Q=C22
dρLabelID
C22xC12:S3144C2^2xC12:S3288,1005

Semidirect products G=N:Q with N=C12:S3 and Q=C22
extensionφ:Q→Out NdρLabelID
C12:S3:1C22 = S3xD24φ: C22/C1C22 ⊆ Out C12:S3484+C12:S3:1C2^2288,441
C12:S3:2C22 = C24:1D6φ: C22/C1C22 ⊆ Out C12:S3484+C12:S3:2C2^2288,442
C12:S3:3C22 = S3xD4:S3φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3:3C2^2288,572
C12:S3:4C22 = D12:D6φ: C22/C1C22 ⊆ Out C12:S3248+C12:S3:4C2^2288,574
C12:S3:5C22 = D12.7D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3:5C2^2288,582
C12:S3:6C22 = D12.10D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3:6C2^2288,589
C12:S3:7C22 = D8xC3:S3φ: C22/C1C22 ⊆ Out C12:S372C12:S3:7C2^2288,767
C12:S3:8C22 = C24:7D6φ: C22/C1C22 ⊆ Out C12:S372C12:S3:8C2^2288,771
C12:S3:9C22 = S32xD4φ: C22/C1C22 ⊆ Out C12:S3248+C12:S3:9C2^2288,958
C12:S3:10C22 = Dic6:12D6φ: C22/C1C22 ⊆ Out C12:S3248+C12:S3:10C2^2288,960
C12:S3:11C22 = D12:13D6φ: C22/C1C22 ⊆ Out C12:S3248+C12:S3:11C2^2288,962
C12:S3:12C22 = S3xQ8:3S3φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3:12C2^2288,966
C12:S3:13C22 = D12:16D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3:13C2^2288,968
C12:S3:14C22 = C2xC32:5D8φ: C22/C2C2 ⊆ Out C12:S3144C12:S3:14C2^2288,760
C12:S3:15C22 = C24:3D6φ: C22/C2C2 ⊆ Out C12:S372C12:S3:15C2^2288,765
C12:S3:16C22 = C2xC3:D24φ: C22/C2C2 ⊆ Out C12:S348C12:S3:16C2^2288,472
C12:S3:17C22 = D12.28D6φ: C22/C2C2 ⊆ Out C12:S3484C12:S3:17C2^2288,478
C12:S3:18C22 = C2xC32:7D8φ: C22/C2C2 ⊆ Out C12:S3144C12:S3:18C2^2288,788
C12:S3:19C22 = C62.131D4φ: C22/C2C2 ⊆ Out C12:S372C12:S3:19C2^2288,789
C12:S3:20C22 = C2xD6.6D6φ: C22/C2C2 ⊆ Out C12:S348C12:S3:20C2^2288,949
C12:S3:21C22 = C2xS3xD12φ: C22/C2C2 ⊆ Out C12:S348C12:S3:21C2^2288,951
C12:S3:22C22 = S3xC4oD12φ: C22/C2C2 ⊆ Out C12:S3484C12:S3:22C2^2288,953
C12:S3:23C22 = D12:24D6φ: C22/C2C2 ⊆ Out C12:S3484C12:S3:23C2^2288,955
C12:S3:24C22 = D12:27D6φ: C22/C2C2 ⊆ Out C12:S3244+C12:S3:24C2^2288,956
C12:S3:25C22 = C2xD4xC3:S3φ: C22/C2C2 ⊆ Out C12:S372C12:S3:25C2^2288,1007
C12:S3:26C22 = C32:82+ 1+4φ: C22/C2C2 ⊆ Out C12:S372C12:S3:26C2^2288,1009
C12:S3:27C22 = C2xC12.26D6φ: C22/C2C2 ⊆ Out C12:S3144C12:S3:27C2^2288,1011
C12:S3:28C22 = C4oD4xC3:S3φ: C22/C2C2 ⊆ Out C12:S372C12:S3:28C2^2288,1013
C12:S3:29C22 = C2xC12.59D6φ: trivial image144C12:S3:29C2^2288,1006
C12:S3:30C22 = C62.154C23φ: trivial image72C12:S3:30C2^2288,1014

Non-split extensions G=N.Q with N=C12:S3 and Q=C22
extensionφ:Q→Out NdρLabelID
C12:S3.1C22 = S3xC24:C2φ: C22/C1C22 ⊆ Out C12:S3484C12:S3.1C2^2288,440
C12:S3.2C22 = D24:S3φ: C22/C1C22 ⊆ Out C12:S3484C12:S3.2C2^2288,443
C12:S3.3C22 = Dic12:S3φ: C22/C1C22 ⊆ Out C12:S3484C12:S3.3C2^2288,449
C12:S3.4C22 = D6.1D12φ: C22/C1C22 ⊆ Out C12:S3484C12:S3.4C2^2288,454
C12:S3.5C22 = D6.3D12φ: C22/C1C22 ⊆ Out C12:S3484+C12:S3.5C2^2288,456
C12:S3.6C22 = Dic6:3D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.6C2^2288,573
C12:S3.7C22 = Dic6:D6φ: C22/C1C22 ⊆ Out C12:S3248+C12:S3.7C2^2288,578
C12:S3.8C22 = Dic6.20D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.8C2^2288,583
C12:S3.9C22 = D12:5D6φ: C22/C1C22 ⊆ Out C12:S3248+C12:S3.9C2^2288,585
C12:S3.10C22 = S3xQ8:2S3φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.10C2^2288,586
C12:S3.11C22 = D12:6D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.11C2^2288,587
C12:S3.12C22 = Dic6.10D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.12C2^2288,593
C12:S3.13C22 = Dic6.22D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.13C2^2288,596
C12:S3.14C22 = D12.13D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.14C2^2288,597
C12:S3.15C22 = D12.14D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.15C2^2288,598
C12:S3.16C22 = C24:8D6φ: C22/C1C22 ⊆ Out C12:S372C12:S3.16C2^2288,768
C12:S3.17C22 = SD16xC3:S3φ: C22/C1C22 ⊆ Out C12:S372C12:S3.17C2^2288,770
C12:S3.18C22 = C24.40D6φ: C22/C1C22 ⊆ Out C12:S3144C12:S3.18C2^2288,773
C12:S3.19C22 = C24.35D6φ: C22/C1C22 ⊆ Out C12:S3144C12:S3.19C2^2288,775
C12:S3.20C22 = C24.28D6φ: C22/C1C22 ⊆ Out C12:S3144C12:S3.20C2^2288,776
C12:S3.21C22 = Dic6.26D6φ: C22/C1C22 ⊆ Out C12:S3488+C12:S3.21C2^2288,964
C12:S3.22C22 = C2xC24:2S3φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.22C2^2288,759
C12:S3.23C22 = C24.78D6φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.23C2^2288,761
C12:S3.24C22 = C24.5D6φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.24C2^2288,766
C12:S3.25C22 = D12:18D6φ: C22/C2C2 ⊆ Out C12:S3244+C12:S3.25C2^2288,473
C12:S3.26C22 = D12.27D6φ: C22/C2C2 ⊆ Out C12:S3484C12:S3.26C2^2288,477
C12:S3.27C22 = C2xC32:5SD16φ: C22/C2C2 ⊆ Out C12:S348C12:S3.27C2^2288,480
C12:S3.28C22 = Dic6.29D6φ: C22/C2C2 ⊆ Out C12:S3484C12:S3.28C2^2288,481
C12:S3.29C22 = C2xC32:11SD16φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.29C2^2288,798
C12:S3.30C22 = C62.134D4φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.30C2^2288,799
C12:S3.31C22 = C62.73D4φ: C22/C2C2 ⊆ Out C12:S372C12:S3.31C2^2288,806
C12:S3.32C22 = C62.74D4φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.32C2^2288,807
C12:S3.33C22 = D12.33D6φ: C22/C2C2 ⊆ Out C12:S3484C12:S3.33C2^2288,945
C12:S3.34C22 = C32:72- 1+4φ: C22/C2C2 ⊆ Out C12:S3144C12:S3.34C2^2288,1012
C12:S3.35C22 = C32:92- 1+4φ: trivial image144C12:S3.35C2^2288,1015

׿
x
:
Z
F
o
wr
Q
<